Lois discrètes

Lois discrètes

Les images ne sont pas encore disponibles pour ce cours.

Celles présentes sont juste des « brouillons »
afin de permettre une meilleure compréhension du cours,
jusqu’à ce que les définitives soient prêtes.

Nos graphistes font tout leur possible pour les réaliser au plus vite.

😉

Introduction :

En classe de première, nous avons vu la notion de variable aléatoire, ainsi que la loi d’une variable aléatoire réelle. Dans ce cours, nous allons découvrir des nouvelles lois de probabilité, à savoir les lois uniformes, la loi de Bernoulli et la loi binomiale, puis les lois géométriques.
La loi binomiale, notamment, est utilisée dans divers domaines d’étude : on s’en sert pour modéliser des situations simples de succès ou d’échec, comme un jeu de pile ou face, par exemple. Elle est également utilisée dans des tests statistiques qui permettent d’interpréter des données et de prendre des décisions dans des situations dépendant du hasard.

Nous commencerons par rappeler quelques notions de probabilité, puis nous découvrirons ce qu’est une loi uniforme. Nous verrons enfin comment définir, à partir d’une épreuve de Bernoulli, la loi de Bernoulli et la loi binomiale.

Rappels

Commençons par faire quelques rappels de première, pour redécouvrir des notions indispensables pour la suite de ce cours.

Probabilités conditionnelles et indépendance

Commençons par rappeler la formule des probabilités totales.

bannière propriete

Propriété

Soit A1,A2,,AnA1,\,A2,\,…,\,A_n une partition de l’univers Ω\Omega et BB un événement quelconque de Ω\Omega.
Alors la probabilité de BB est donnée par la formule :

p(B)=p(A1B)+p(A2B)++p(AnB)p(B)=p(A1\cap B)+p(A2\cap B)+⋯+p(A_n\cap B)

Alt texte Image temporaire

Rappelons que ces événements AiA_i forment une partition de l’univers Ω\Omega si les 33 conditions suivantes sont vérifiées :

  • aucun des AiA_i n’est de probabilité nulle pour ii allant de 11 à nn ;
  • les AiAi sont 22 à 22 disjoints : AiAj=Ai\cap A_j=\varnothing pour iji\neq j, avec ii et jj compris entre 11 et nn ;
  • la réunion des AiA_i est égale à l’univers Ω\Omega :

A1A2An=ΩA1\cup A2\cup…\cup A_n=\Omega

Redonnons maintenant la définition des probabilités conditionnelles.

bannière definition

Définition

Probabilité conditionnelle :

Soit AA et BB deux événements de l’univers Ω\Omega. Supposons non nulle la probabilité de AA.
On appelle probabilité conditionnelle de BB sachant AA le nombre, noté pA(B)p_A (B), défini par :

pA(B)=p(AB)p(A)p_A (B)=\dfrac{p(A\cap B)}{p(A)}

Nous pouvons faire quelques remarques :

  • pA(B)p_A (B) est la probabilité que l’événement BB se réalise sachant que l’événement AA s’est réalisé ;
  • pA(B)pB(A)pA (B)\neq pB (A) ;
  • une probabilité conditionnelle a les mêmes propriétés qu’une probabilité ;
  • on déduit de la définition que :

p(AB)=pA(B)×p(A) [avec p(A)0]p(A\cap B)=p_A (B)\times p(A)\footnotesize{\textcolor{#A9A9A9}{\text{ [avec $p(A)\neq0$]}}}

bannière à retenir

À retenir

Comme on a : p(AB)=pA(B)×p(A)p(A\cap B)=p_A(B)\times p(A), alors la formule des probabilités totales peut aussi s’écrire sous la forme :

p(B)=pA1(B)×p(A1)+pA2(B)×p(A2)++pAn(B)×p(An)p(B)=p{A1} (B)\times p(A1)+p{A2} (B)\times p(A2)+⋯+p{An} (B)\times p(A_n)

Enfin, il est important de préciser l’indépendance de deux événements.

bannière definition

Définition

Indépendance de deux événements :

Soit AA et BB deux événements associés à une expérience aléatoire.
On dit que les événements AA et BB sont indépendants si et seulement si :

p(AB)=p(A)×p(B)p(A\cap B)=p(A)\times p(B)

Et nous pouvons en déduire les propriétés suivantes.

bannière propriete

Propriété

Soit AA et BB deux événements associés à une expérience aléatoire.
AA et BB sont indépendants :

  • si et seulement si pA(B)=p(B)p_A(B)=p(B), avec p(A)0p(A)\neq 0 ;
  • si et seulement si pB(A)=p(A)p_B(A)=p(A), avec p(B)0p(B)\neq 0.

Variable aléatoire et loi de probabilité

Ce cours est consacré à des variables aléatoires qui suivent certaines lois de probabilité. Il est donc utile de redonner les définitions de ces notions.

bannière definition

Définition

Variable aléatoire :

On considère une expérience aléatoire dont l’univers est un ensemble fini Ω\Omega.
Une variable aléatoire XX est une fonction définie sur Ω\Omega et à valeurs dans R\mathbb R.

  • Définir une variable aléatoire consiste donc à associer un réel à chaque issue de l’expérience aléatoire.
bannière definition

Définition

Loi de probabilité d’une variable aléatoire :

Soit XX une variable aléatoire définie sur un univers Ω\Omega et qui prend les valeurs x1x1, x2x2, …, xnxn.
Définir la loi de probabilité de XX consiste à donner les probabilités p(X=xi)p(X=x
i), pour tout entier ii compris entre 11 et nn.

Nous pouvons aussi mieux décrire une variable aléatoire, grâce à des indicateurs : l’espérance, la variance et l’écart-type.

bannière definition

Définition

Espérance, variance et écart-type :

Soit XX une variable aléatoire qui prend les valeurs x1x1, x2x2, …, xnxn , avec respectivement les probabilités p1p1, p2p2, …, pnpn.

  • L’espérance de XX est le réel, noté E(X)E(X), défini par :

E(X)=i=1nxipiE(X)=\sum{i=1}^n xip_i

  • La variance de XX est le réel positif, noté V(X)V(X), défini par :

V(X)=i=1npi(xiE(X))2V(X)=\sum{i=1}^n pi\big(x_i-E(X)\big)^2

  • L’écart-type de XX est le réel positif, noté σ(X)\sigma(X), défini par :

σ(X)=V(X)\sigma(X)=\sqrt{V(X)}

Rappelons enfin les interprétations que l’on peut tirer de ces indicateurs.

bannière à retenir

À retenir

  • L’espérance s’interprète comme la valeur moyenne prise par XX lorsqu’on répète un grand nombre de fois l’expérience aléatoire.
  • La variance et l’écart-type mesurent la dispersion des valeurs prises par XX autour de l’espérance.
  • Plus ils sont grands, plus les valeurs sont dispersées.

Ces rappels étant faits, nous pouvons maintenant aborder quelques lois de probabilité remarquables.

Loi uniforme discrète

Définition

Commençons par une loi simple à se représenter.
Pour cela, considérons un jeu non truqué de 3232 cartes, indiscernables au toucher.
On tire une carte :

  • s’il s’agit d’un cœur, on marque 11 point ;
  • s’il s’agit d’un carreau, on marque 22 points ;
  • s’il s’agit d’un pique, on marque 33 points ;
  • s’il s’agit d’un trèfle, on marque 44 points.

Soit XX la variable aléatoire qui associe à la carte tirée le nombre de points.

  • Nous voyons que XX prend ses valeurs dans l’ensemble {1,2,3,4}\lbrace 1,\,2,\,3,\, 4 \rbrace.

Calculons maintenant les probabilités que XX soit égal à ii, avec ii compris entre 11 et 44. Chaque carte a la même probabilité d’être tirée : nous sommes donc dans une situation d’équiprobabilité.

  • Nous pouvons donc considérer que la probabilité d’obtenir un événement AA est égale à :

p(A)=Nombre d’issues reˊalisant ANombre total d’issuesp(A)=\dfrac{\text{Nombre d’issues réalisant }A}{\text{Nombre total d’issues}}

Ainsi, il y a au total 3232 issues, et l’événement X=1X=1 est réalisé par l’événement « La carte tirée est un cœur », lui-même réalisé par 88 issues (« La carte tirée est un sept de cœur », « La carte tirée est un huit de cœur », etc.).

  • Nous obtenons donc :

p(X=1)=832=14\begin{aligned} p(X=1)&=\dfrac 8{32} \ &=\dfrac 14 \end{aligned}

  • Nous obtenons de la même façon :

p(X=2)=14p(X=3)=14p(X=4)=14\begin{aligned} p(X=2) &= \dfrac 14 \ p(X=3) &= \dfrac 14 \ p(X=4) &= \dfrac 14 \end{aligned}

Nous voyons donc que :

p(X=1)=p(X=2)=p(X=3)=p(X=4)=14p(X=1)=p(X=2)=p(X=3)=p(X= 4)=\dfrac 14

  • On dit alors que la variable aléatoire XX suit une loi uniforme sur {1,2,3,4}\lbrace 1,\,2,\,3,\, \purple 4 \rbrace et, pour tout ii compris entre 11 et 4\purple 4 :

p(X=i)=14p(X=i)=\dfrac{1}{\purple 4}

bannière definition

Définition

Loi uniforme :

Soit XX une variable aléatoire définie sur Ω\Omega et qui prend ses valeurs dans {1,2,,n}\lbrace 1,\,2,\,…,\,n\rbrace.
On dit que XX suit une loi uniforme sur {1,2,,n}\lbrace 1,\,2,\,…,\,n\rbrace si, pour tout entier i{1,2,,n}i\in \lbrace 1,\,2,\,…,\,n\rbrace :

p(X=i)=1np(X=i)=\dfrac 1n

Indicateurs d’une variable suivant une loi uniforme

bannière propriete

Propriété

Soit XX une variable aléatoire qui suit une loi uniforme sur {1,2,,n}\lbrace 1,\,2,\,…,\,n\rbrace.
L’espérance E(X)E(X) et la variance V(X)V(X) se calculent avec les formules :

E(X)=n+12V(X)=n2112\begin{aligned} E(X)&=\dfrac{n+1}2 \ V(X)&=\dfrac{n^2-1}{12} \end{aligned}

Démontrons la formule donnée pour le calcul de l’espérance.

bannière demonstration

Démonstration

Il suffit de faire appel à la définition de l’espérance :

E(X)=i=1ni×1n=1×1n+2×1n++n×1n=1n×(1+2++n)=1n×n(n+1)2[par la formule vue en premieˋrequi donne la somme des n premiers entiers non nuls]=n+12\begin{aligned} E(X)&= \sum_{i=1}^n i\times \dfrac 1n \ &=1\times \dfrac 1n + 2\times \dfrac 1n +…+n\times \dfrac 1n \ &=\dfrac 1n\times (1 + 2 +… + n) \ &=\dfrac 1n \times \dfrac{n(n+1)}2 \ &\footnotesize{\textcolor{#A9A9A9}{\text{[par la formule vue en première}}} \ &\footnotesize{\textcolor{#A9A9A9}{\text{qui donne la somme des nn premiers entiers non nuls]}}} \ &=\dfrac{n+1}2 \end{aligned}

bannière exemple

Exemple

Reprenons notre situation initiale, avec le jeu de 3232 cartes.

  • Nous obtenons :

E(X)=4+12=2,5\begin{aligned} E(X)&=\dfrac {4+1}2 \ &=2,5 \end{aligned}

Nous pouvions le pressentir intuitivement : si l’on répète un grand nombre de fois l’expérience, on gagnera en moyenne 2,52,5 points.

Calcul de probabilités dans le cas d’une loi uniforme

Si une variable aléatoire suit une loi uniforme, il est assez simple de calculer des probabilités, nous allons le montrer à travers un exemple.

Considérons la variable aléatoire XX qui suit une loi uniforme sur {1,2,,150}\lbrace 1,\,2,\,…,\,150\rbrace.

  • Calculons p(X=112)p(X=112).

Puisque XX suit une loi uniforme sur {1,2,,150}\lbrace 1,\,2,\,…,\,150\rbrace, nous avons, pour tout i{1,2,,150}i\in \lbrace 1,\,2,\,…,\,150\rbrace :

p(X=i)=1150p(X=i)=\dfrac 1{150}

  • Et en particulier, l’événement (X=112)(X=112) étant élémentaire :

p(X=112)=1150p(X=112)=\frac 1{150}

  • Calculons p(75<X<80)p(75.

L’événement (75<X<80)(75 est réalisé par les événements élémentaires (X=76)(X=76), (X=77)(X=77), (X=78)(X=78), (X=79)(X=79), qui sont au nombre de 44.

  • Nous obtenons donc :

p(75<X<80)=p(X=76)+p(X=77)+p(X=78)+p(X=79)=1150+1150+1150+1150=4×1150=275\begin{aligned} p(75

  • Calculons p(X145)p(X\geq 145).

L’événement (X145)(X\geq 145) est réalisé par les événements élémentaires (X=145)(X=145), (X=146)(X=146), (X=147)(X=147), (X=148)(X=148), (X=149)(X=149), (X=150)(X=150), qui sont au nombre de 66.

  • Nous obtenons donc :

p(X145)=p(X=145)+p(X=146)+p(X=147)+p(X=148)+p(X=149)+p(X=150)=1150+1150+1150+1150+1150+1150=6×1150=125\begin{aligned} p(X\geq 145)&= p(X=145)+p(X=146)+p(X=147) \ &\quad\quad\quad+p(X=148)+p(X=149)+p(X=150) \ &= \dfrac 1 {150}+\dfrac 1 {150}+\dfrac 1 {150}+\dfrac 1 {150}+\dfrac 1 {150}+\dfrac 1 {150} \ &=6\times \dfrac 1{150} \ &=\dfrac {1}{25} \end{aligned}

Épreuve, loi et schéma de Bernoulli

Jacques Bernoulli, mathématicien et physicien suisse des XVIIe et XVIIIe siècles, est l’auteur de l’un des ouvrages les plus importants dans la théorie des probabilités : l’Ars Conjectandi, publié de manière posthume en 1713.
Nous allons ici étudier la loi à laquelle il a donné son nom.

Épreuve de Bernoulli

Commençons par définir ce type d’expérience aléatoire.

bannière definition

Définition

Épreuve de Bernoulli :

Une épreuve de Bernoulli est une expérience aléatoire qui ne comporte que deux issues, appelées généralement succès (SS) et échec (EE).

bannière à retenir

À retenir

Si on note pp la probabilité d’obtenir SS, alors, comme SS et EE sont deux événements complémentaires (E=SˉE=\bar S), la probabilité d’obtenir EE est donc 1p1-p.

Voici l’arbre correspondant à une épreuve de Bernoulli :

Alt texte Image temporaire

Prenons quelques exemples.

bannière exemple

Exemple

  • L’expérience qui consiste à lancer une pièce de monnaie et à regarder si la face pile est obtenue est une épreuve de Bernoulli. En effet, on n’a que deux issues : soit pile (succès), soit face (échec).
  • Si la pièce n’est pas truquée, la probabilité pp d’obtenir un succès est égale à 12\frac 12.
  • L’expérience qui consiste à tirer une carte au hasard dans un jeu de 3232 cartes et à regarder si c’est un roi est aussi une épreuve de Bernoulli : les issues possibles sont tirer un roi (succès) et toute autre carte (échec).
  • Si le jeu de cartes n’est pas truqué, la probabilité pp d’obtenir un succès est égale à 432=18\frac 4{32}=\frac 18.

Loi de Bernoulli

Dans le cas d’une épreuve de Bernoulli, nous pouvons définir une variable aléatoire XX.
Par convention, nous choisissons d’associer 11 à toute issue correspondant à un succès et 00 à toute issue correspondant à un échec.

  • Ainsi, si Ω\Omega est l’univers de l’épreuve de Bernoulli considérée :

X(Ω)={0,1}X(\Omega)=\lbrace 0,\,1\rbrace

Et nous pouvons donner sa loi de probabilité, appelée loi de Bernoulli.

bannière definition

Définition

Loi de Bernoulli :

On considère une épreuve de Bernoulli avec une probabilité pp d’obtenir un succès.
Soit XX la variable aléatoire qui ne prend que deux valeurs :

  • la valeur 11 si l’issue est un succès ;
  • la valeur 00 si l’issue est un échec.

Alors la loi de probabilité de la variable aléatoire XX est appelée loi de Bernoulli de paramètre pp.

bannière à retenir

À retenir

Elle est donnée par le tableau suivant :

xixi 11 00
p(X=xi)p(X=xi) pp 1p1-p

Comme pour la loi uniforme, nous pouvons donner les formules permettant de calculer les indicateurs d’une variable aléatoire qui suit une loi de Bernoulli.

bannière propriete

Propriété

Si XX est une variable aléatoire suivant une loi de Bernoulli de paramètre pp, alors :

  • l’espérance mathématique de XX vaut :

E(X)=pE(X)=p

  • la variance de XX vaut :

V(X)=p(1p)V(X)=p(1-p)

  • l’écart-type de XX vaut :

σ(X)=p(1p)\sigma(X)=\sqrt{p(1-p)}

Nous pouvons le démontrer facilement, grâce aux définitions que nous connaissons.

bannière demonstration

Démonstration

  • Par définition, l’espérance de XX est :

E(X)=1×p(X=1)+0×p(X=0)=1×p+0×(1p)=p\begin{aligned} E(X)&=1\times p(X=1)+0\times p(X=0) \ &=1\times p+0\times (1-p)\ &=p \end{aligned}

  • Par définition de la variance, on a :

V(X)=p(X=1)×(1E(X))2+p(X=0)×(0E(X))2=p×(1p)2+(1p)×(0p)2 [car E(X)=p]=(1p)×(p(1p)+p2) [en factorisant par (1p)]=(1p)×(pp2+p2)=(1p)×p\begin{aligned} V(X)&=p(X=1)\times \big(1-E(X)\big)^2+p(X=0)\times \big(0-E(X)\big)^2 \ &=p\times (1-p)^2+(1-p)\times (0-p)^2 \footnotesize{\textcolor{#A9A9A9}{\text{ [car $E(X)=p$]}}} \ &=(1-p)\times \big(p(1-p)+p^2\big) \footnotesize{\textcolor{#A9A9A9}{\text{ [en factorisant par $(1-p)$]}}} \ &=(1-p)\times (p-p^2+p^2) \ &=(1-p)\times p \end{aligned}

  • Nous en déduisons l’écart-type :

σ(X)=V(X)=p(1p)\begin{aligned} \sigma(X)&=\sqrt{V(X)} \ &=\sqrt{p(1-p)} \end{aligned}

Schéma de Bernoulli

Nous allons maintenant voir ce qui se passe si l’on répète une épreuve de Bernoulli plusieurs fois de suite.

bannière definition

Définition

Schéma de Bernoulli :

On appelle schéma de Bernoulli la répétition de nn épreuves de Bernoulli identiques et indépendantes.

bannière à retenir

À retenir

Les conditions identiques et indépendantes sont fondamentales pour être dans le cas d’un schéma de Bernoulli. Elles doivent donc être toujours vérifiées dans chaque situation.
Pour cela, nous vérifions :

  • si les issues des épreuves sont les mêmes ;
  • et si ces issues ont les mêmes probabilités d’une épreuve à l’autre.

On peut représenter un schéma de Bernoulli par un arbre pondéré, mais qui devient compliqué à tracer pour nn assez grand.
Nous allons donner celui correspondant à un schéma de Bernoulli pour n=3n=3 (épreuve de Bernoulli répétée 33 fois) dans l’exemple ci-dessous.

bannière exemple

Exemple

Dans une urne contenant 55 boules blanches et 33 boules vertes, indiscernables au toucher, on tire une boule au hasard.
On regarde si elle est verte, on a alors un succès, et on la remet.
On effectue au total 33 tirages.

  • Nous voyons bien ici que les issues sont les mêmes : « La boule tirée est verte » et « La boule tirée est blanche ».
  • Et, comme, il y a remise après tirage, les probabilités sont identiques pour chaque expérience.
  • La répétition de cette expérience 33 fois de suite est un schéma de Bernoulli, avec les paramètres n=3n=3 et p=38p=\frac 38.

p=38p=\frac 38 est la probabilité d’obtenir un succès : « La boule tirée est verte ».
La probabilité d’obtenir un échec : « La boule tirée est blanche », est alors égale à 1p=581-p=\frac 58.

Ce schéma de Bernoulli est représenté par l’arbre pondéré suivant, dans lequel VV est l’événement « La boule tirée est verte » (succès) et BB « La boule tirée est blanche » (échec).

Alt texte Image temporaire

Coefficient binomial

Dans notre exemple précédent, nous pourrions nous demander combien il existe de façons d’obtenir 11, 22 ou 33 succès, c’est-à-dire, dans l’arbre pondéré que nous avions, combien il existe de chemins contenant 11, 22 ou 33 succès.

  • Ce nombre est donné par le coefficient binomial.
bannière definition

Définition

Coefficient binomial :

Considérons un arbre pondéré représentant un schéma de Bernoulli de paramètres nn et pp. Soit kk un entier naturel tel que 0kn0\leq k\leq n.
On appelle coefficient binomial, noté (nk)\binom nk, le nombre de chemins correspondant à kk succès.

  • La notation (nk)\binom nk se lit « k parmi n ».

Reprenons l’arbre précédent, et nous cherchons à savoir combien de chemins mènent à 22 succès, c’est-à-dire à 22 boules vertes tirées parmi les 33.

  • Ces chemins sont : (V,V,B)(V,\,V,\,B), (V,B,V)(V,\,B,\,V) et (B,V,V)(B,\,V,\,V). On en a donc :

(32)=3\binom 32=3

On calcule de même le nombre de chemins pour obtenir 00, 11 et 33 succès, et nous obtenons :

(30)=1\displaystyle \binom 30=1 Il y a 11 seul chemin contenant 00 succès (B,B,B)(B,\,B,\,B)
(31)=3\displaystyle \binom 31=3 Il y a 33 chemins contenant 11 succès (V,B,B)(B,V,B)(B,B,V)\begin{aligned} (V,\,B,\,B) \ (B,\,V,\,B) \ (B,\,B,\,V) \end{aligned}
(32)=3\displaystyle \binom 32=3 Il y a 33 chemins contenant 22 succès (V,V,B)(V,B,V)(B,V,V)\begin{aligned} (V,\,V,\,B) \ (V,\,B,\,V) \ (B,\,V,\,V) \end{aligned}
(33)=1\displaystyle \binom 33=1 Il y a 11 seul chemin contenant 33 succès (V,V,V)(V,\,V,\,V)

Nous remarquons les égalités suivantes :

(30)=(33)=1(31)=(32)=3\begin{aligned} \binom 30&=\binom 33=1 \ \binom 31&=\binom 32=3 \end{aligned}

Nous pouvons donner les propriétés suivantes.

bannière propriete

Propriété

Soit nn un entier naturel.
Nous avons :

(n0)=(nn)=1(nk)=(nnk) [ouˋ 0kn]\begin{aligned} \binom n0&=\binom nn=1 \ \binom n k&=\binom n {n-k} \footnotesize{\textcolor{#A9A9A9}{\text{ [où $0\leq k\leq n$]}}} \end{aligned}

Nous pouvons aussi donner la formule de Pascal.

bannière propriete

Propriété

Si n2n\geq 2 et 1kn11\leq k\leq n-1, nous avons :

(nk)=(n1k)+(n1k1)\binom nk =\binom {n-1}k+\binom{n-1}{k-1}

Avec ces formules, on peut calculer de proche en proche les coefficients binomiaux.

  • Pour cela, nous pouvons nous servir du triangle de Pascal, que nous donnons jusqu’à n=9n=9 :

nk^{k\,\rightarrow}_{n\,\downarrow} 00 11 22 33 44 55 66 77 88 99
00 11
11 11 11
22 11 22 11
33 11 33 33 11
44 11 44 66 44 11
55 11 55 1010 1010 55 11
66 11 66 1515 2020 1515 66 11
77 11 77 2121 3535 3535 2121 77 11
88 11 88 2828 5656 7070 5656 2828 88 11
99 11 99 3636 8484 126126 126126 8484 3636 99 11
bannière astuce

Astuce

On peut aussi calculer ces coefficients binomiaux avec une calculatrice.

Loi binomiale

Nous venons donc de définir ce qu’était un schéma de Bernoulli. Nous allons maintenant nous intéresser à ce qui nous importe vraiment ici, c’est-à-dire à la probabilité d’avoir kk succès dans un schéma de Bernoulli composé de nn épreuves (avec donc nn et kk des entiers naturels tels que knk\leq n).

Définition

bannière definition

Définition

Loi binomiale :

Soit XX la variable aléatoire qui compte le nombre de succès obtenus lors de nn épreuves d’un schéma de Bernoulli, et pp la probabilité de succès à chaque épreuve.
Alors la variable aléatoire XX suit une loi de probabilité appelée loi binomiale de paramètres nn et pp, et notée généralement B(n,p)\mathcal B(n,\, p).

bannière à retenir

À retenir

Pour prouver qu’une variable aléatoire XX suit une loi binomiale, on justifie que les conditions suivantes sont vérifiées :

  • il faut avoir nn expériences identiques ;
  • chaque expérience a 22 issues possibles (épreuve de Bernoulli) ;
  • ces expériences sont indépendantes les unes des autres ;
  • la variable aléatoire XX compte le nombre de succès obtenus lors des nn épreuves.

Reprenons notre dernier exemple pour bien comprendre cette loi binomiale.

bannière exemple

Exemple

On considère la variable aléatoire XX, qui donne le nombre de boules vertes obtenues après 33 tirages.
Toutes les conditions données plus haut sont vérifiées.

  • XX suit une loi binomiale B(3,38)\mathcal B\left(3,\, \frac 38\right).

Avec l’arbre précédent, on peut expliciter cette loi binomiale B(3,38)\mathcal B\left(3,\, \frac 38\right) en précisant que les valeurs possibles prises par XX sont : 00, 11, 22 et 33 (valeurs correspondant au nombre de succès possibles lors des 33 tirages avec remise).

Ensuite, pour calculer, par exemple, la probabilité d’avoir 22 fois un succès, on s’intéresse aux chemins contenant exactement 22 fois l’événement VV.

  • Il y a 33 chemins qui correspondent à 22 succès, à savoir (B,V,V)(B,\,V,\,V), (V,B,V)(V,\,B,\,V) et (V,V,B)(V,\,V,\,B). Donc :

p(X=2)=(58×38×38)+(38×58×38)+(38×38×58)=45512+45512+45512=3×45512=135512\begin{aligned} p(X=2)&= \left( \dfrac 58\times \dfrac 38\times \dfrac 38\right)+\left(\dfrac 38\times \dfrac 58\times \dfrac 38\right)+\left(\dfrac 38\times \dfrac 38\times \dfrac 58\right) \ &=\dfrac{45}{512}+\dfrac{45}{512}+\dfrac {45}{512} \ &=3\times \dfrac{45}{512} \ &=\dfrac{135}{512} \end{aligned}

De même, on pourra calculer p(X=0)p(X=0), p(X=1)p(X=1) et p(X=3)p(X=3).

Probabilités d’une loi binomiale

Dans le tout dernier exemple, nous avons pu nous servir d’un arbre pondéré pour calculer les probabilités de la loi binomiale, mais nous avions un schéma de Bernoulli avec seulement 33 épreuves. Cela devient trop long et fastidieux dès que le nombre d’épreuves grandit.

  • Nous nous servons alors de la propriété suivante.
bannière propriete

Propriété

Soit XX une variable aléatoire suivant une loi binomiale B(n,p)\mathcal B(n,\, p).
Pour tout entier naturel kk (avec 0kn)0\leq k\leq n), la probabilité d’obtenir kk succès sur les nn épreuves est donnée par la formule :

p(X=k)=(nk)pk(1p)nkp(X=k)=\binom nk p^k (1-p)^{n-k}

bannière exemple

Exemple

Reprenons notre jeu de tirage de boules, mais, cette fois, nous répétons 99 fois l’épreuve (toujours avec remise de la boule).
Et nous cherchons à connaître la probabilité d’obtenir 55 succès.

  • Considérons la variable aléatoire YY qui compte le nombre de boules vertes obtenues après 99 tirages.
  • YY suit une loi binomiale de paramètres n=9n=9 et p=38p=\frac 38.
  • Pour calculer la probabilité d’obtenir k=5k=5 succès, nous utilisons la propriété précédente :

p(Y=5)=(95)×(38)5×(58)95=126×3585×5484[en nous servant du triangle de Pascal pour connaıˆtre (95)]=126×35×54890,1426\begin{aligned} p(Y=5)&=\binom 95 \times \left(\dfrac 38\right)^5 \times \left(\dfrac 58\right)^{9-5} \ &=126\times \dfrac {3^5}{8^5} \times \dfrac{5^4}{8^4} \ &\footnotesize{\textcolor{#A9A9A9}{\text{[en nous servant du triangle de Pascal pour connaître $\binom 95$]}}} \ &=\dfrac{126\times 3^5\times 5^4}{8^9} \ &\approx 0,1426 \end{aligned}

  • En 99 tirages, la probabilité de tirer 55 boules vertes est d’environ 0,14260,1426.
bannière astuce

Astuce

Nous pouvons aussi nous servir de la calculatrice pour calculer directement, grâce à leurs fonctions, les probabilités d’une loi binomiale, par exemple celle suivie par la variable aléatoire YY définie dans le dernier exemple.

  • Calculons p(Y=5)p(Y=5).
  • Avec une TI, en utilisant la fonction binomFdp(9,3/8,5)\text{binomFdp}(9,3/8,5).
  • Avec une Casio, en utilisant la fonction BinominalePD(5,9,3/8)\text{BinominalePD}(5,9,3/8).
  • Nous obtenons : p(Y=5)0,1426p(Y=5)\approx 0,1426.
  • Calculons aussi p(Y4)p(Y\leq 4).
  • Avec une TI, en utilisant la fonction binomFRep(9,3/8,4)\text{binomFRep}(9,3/8,4).
  • Avec une Casio, en utilisant la fonction BinominaleCD(4,9,3/8)\text{BinominaleCD}(4,9,3/8).
  • Nous obtenons : p(Y4)0,7834p(Y\leq 4)\approx 0,7834.
  • Nous pouvons en déduire p(Y5)p(Y\geq 5) :

p(Y5)=p(Y>4)=1p(Y4)[car Y>4 et Y4 sont des eˊveˊnements contraires]0,2166\begin{aligned} p(Y\geq 5) &= p(Y>4) \ &=1-p(Y\leq 4) \ &\footnotesize{\textcolor{#A9A9A9}{\text{[car $Y>4$ et $Y\leq 4$ sont des événements contraires]}}} \ &\approx 0,2166 \end{aligned}

  • La probabilité d’obtenir au moins 55 boules vertes (soit 55 succès) après 99 tirages est d’environ 0,21660,2166.

Nous pouvons aussi donner une représentation graphique d’une loi binomiale, en utilisant par exemple un tableur et toujours en travaillant avec la variable aléatoire YY ci-dessus définie.

  • Dans un tableur, entrer sur une ligne le nombre de succès possibles, de 00 à 99 dans notre exemple (utiliser les fonctions usuelles d’un tableur si le nombre de colonnes à créer est grand).

A B C D E F G H I J
1 0\footnotesize 0 1\footnotesize 1 2\footnotesize 2 3\footnotesize 3 4\footnotesize 4 5\footnotesize 5 6\footnotesize 6 7\footnotesize 7 8\footnotesize 8 9\footnotesize 9
  • Dans notre exemple, la colonne A correspond donc à 00 succès.

Pour calculer la probabilité d’avoir k\green k succès parmi n\red n tirages, la probabilité d’avoir un succès étant égale à p\purple p, nous utilisons la fonction du tableur dédiée :

LOI.BINOMIALE(k;n;p;0)\text{LOI.BINOMIALE($\green k$\,;\,$\red n$\,;\,$\purple p$\,;\,00)}

Le dernier paramètre est une variable booléenne (00 ou 11), qui indique si nous voulons la probabilité cumulative ou non.

  • Nous avons mis $0$ pour le dernier paramètre, car nous voulons la valeur p(X=k)p(X=k).
  • Nous aurions mis 11 si nous avions souhaité la valeur p(Xk)p(X\leq k).

Ici, nous entrons donc dans la cellule A2 la formule :

LOI.BINOMIALE(A1;9;3/8;0)\text{LOI.BINOMIALE(\green {A1}\,;\,$\red 9$\,;\,$\purple {3/8}$\,;\,$0$)}

Puis nous copions la formule vers la droite, de la manière habituelle.

  • Nous obtenons, avec un arrondi à 10410^{-4} près :

A B C D E F G H I J
1 0\footnotesize 0 1\footnotesize 1 2\footnotesize 2 3\footnotesize 3 4\footnotesize 4 5\footnotesize \blue 5 6\footnotesize 6 7\footnotesize 7 8\footnotesize 8 9\footnotesize 9
2 0,0146\footnotesize 0,0146 0,0786\footnotesize 0,0786 0,1886\footnotesize 0,1886 0,2640\footnotesize 0,2640 0,2376\footnotesize 0,2376 0,1426\footnotesize \blue{0,1426} 0,0570\footnotesize 0,0570 0,0147\footnotesize 0,0147 0,0022\footnotesize 0,0022 0,0001\footnotesize 0,0001

Nous pouvons remarquer que la probabilité donnée pour 55 succès est égale à celle que nous avons calculée plus haut : environ 0,14260,1426.
Nous pouvons aussi noter que la probabilité d’obtenir 99 succès est quasi négligeable.

  • Nous sélectionnons enfin la plage de données et insérons le diagramme à bâtons correspondant :

Alt texte Image temporaire

Indicateurs d’une variable aléatoire suivant une loi binomiale (et application)

Comme nous en avons pris désormais l’habitude, pour mieux décrire une variable aléatoire, nous calculons son espérance, sa variance et son écart-type. Et nous disposons aussi de formules, que nous admettrons dans ce cours, pour une variable aléatoire suivant une loi binomiale.

bannière propriete

Propriété

Soit XX une variable aléatoire suivant une loi binomiale de paramètres nn et pp.
L’espérance E(X)E(X), la variance V(X)V(X) et l’écart-type σ(X)\sigma(X) sont données par :

E(X)=npV(X)=np(1p)σ(X)=V(X)=np(1p)\begin{aligned} E(X)&=np \ V(X)&=np(1-p) \ \sigma(X)&=\sqrt{V(X)}=\sqrt{np(1-p)} \end{aligned}

Nous allons maintenant, à travers un exemple, récapituler ce que nous avons découvert sur la loi binomiale :

  • nous montrerons que la variable aléatoire à laquelle nous nous intéressons suit une loi binomiale et nous déterminerons ses paramètres ;
  • nous nous servirons d’un tableur pour calculer les probabilités de la loi et nous les représenterons graphiquement ;
  • nous en profiterons pour donner une méthodologie pour déterminer les valeurs aa et bb telles que p(aXb)αp(a\leq X\leq b) \textcolor{FF4500} \geq \alpha, où α[0 ;1]\alpha \in [0\ ;\, 1] ;
  • nous calculerons les indicateurs de la variable aléatoire.
bannière exemple

Exemple

Lors du premier tour des dernières élections, la participation était de 45%45\,\%. 4040 personnes inscrites sur les listes électorales sont tirées au sort. Nous admettons que ces listes disposent de suffisamment de noms pour pouvoir considérer que le « tirage » se fait avec remise.
Soit XX la variable aléatoire qui compte le nombre de personnes, parmi les 4040, qui ont voté à ce premier tour.

  • Montrons que XX suit une loi binomiale de paramètres $n$ et pp, et déterminons ces derniers.
  • Il s’agit donc de tirer au sort une personne et de regarder si elle a voté. Ce tirage est répété 4040 fois et, pour chaque tirage, nous avons 22 issues :
  • « La personne choisie a voté », considérée comme succès (SS) ;
  • « La personne choisie n’a pas voté », considérée comme échec (EE).
  • Nous considérons que le tirage se fait avec remise. Il y a donc 4040 expériences identiques et indépendantes.
  • La variable aléatoire compte le nombre de personnes qui ont voté parmi les 4040 personnes choisies, soit le nombre de succès.
  • Enfin, la proportion des votants parmi la population des inscrits est égale à 0,450,45.
  • XX suit une loi binomiale de paramètres n=40n=40 et p=0,45p=0,45.
  • Représentons graphiquement la loi binomiale correspondante.

La variable aléatoire XX prend ses valeurs dans {0,1,2,,38,39,40}\lbrace 0,\,1,\,2,\,…,\,38,\,39,\,40 \rbrace.

  • Nous nous servons d’un tableur, comme nous l’avons vu plus haut, pour entrer les valeurs et calculer les probabilités de chaque valeur possible pour XX (p(X=k)p(X=k)) :

LOI.BINOMIALE(k;40;0,45;0)\text{LOI.BINOMIALE(k\,;\,40\,;\,0,45\,;\,$0$)}

  • Cette fois, nous ajoutons un champ pour donner les probabilités cumulatives (p(Xk)p(X\leq k)) :

LOI.BINOMIALE(k;40;0,45;1)\text{LOI.BINOMIALE(k\,;\,40\,;\,0,45\,;\,$1$)}

  • Nous obtenons le diagramme suivant :

Alt texte Image temporaire

  • Nous souhaitons déterminer aa et bb tels que p(aXb)0,95p(a\leq X\leq b) \textcolor{FF4500} \geq 0,95.

Cela revient à chercher le plus « petit » intervalle II tel que XX appartienne à II avec une probabilité au moins égale à 0,950,95.

Nous remarquons que les probabilités pour k8k\leq 8 et k28k\geq 28 sont inférieures à 10310^{-3} et sont ainsi peu significatives, nous nous concentrons donc sur 9k279\leq k \leq 27.

  • Le tableur nous a donné les valeurs suivantes (arrondies à 10410^{-4} près) :

k\footnotesize k 9\footnotesize 9 10\footnotesize 10 11\footnotesize 11 12\footnotesize \red{12} 13\footnotesize 13 14\footnotesize 14 15\footnotesize 15 16\footnotesize 16 17\footnotesize 17
p(X=k)\footnotesize p(X=k) 0,0018\footnotesize 0,0018 0,0047\footnotesize 0,0047 0,0105\footnotesize 0,0105 0,0207\footnotesize 0,0207 0,0365\footnotesize 0,0365 0,0575\footnotesize 0,0575 0,0816\footnotesize 0,0816 0,1043\footnotesize 0,1043 0,1205\footnotesize 0,1205
p(Xk)\footnotesize p(X\leq k) 0,0027\footnotesize 0,0027 0,0074\footnotesize 0,0074 0,0179\footnotesize 0,0179 0,0386\footnotesize \red{0,0386} 0,0751\footnotesize 0,0751 0,1326\footnotesize 0,1326 0,2142\footnotesize 0,2142 0,3185\footnotesize 0,3185 0,4391\footnotesize 0,4391

18\footnotesize 18 19\footnotesize 19 20\footnotesize 20 21\footnotesize 21 22\footnotesize 22 23\footnotesize 23 24\footnotesize \red{24} 25\footnotesize 25 26\footnotesize 26 27\footnotesize 27
0,1260\footnotesize 0,1260 0,1194\footnotesize 0,1194 0,1025\footnotesize 0,1025 0,0799\footnotesize 0,0799 0,0565\footnotesize 0,0565 0,0362\footnotesize 0,0362 0,0210\footnotesize 0,0210 0,0110\footnotesize 0,0110 0,0052\footnotesize 0,0052 0,0022\footnotesize 0,0022
0,5651\footnotesize 0,5651 0,6844\footnotesize 0,6844 0,7870\footnotesize 0,7870 0,8669\footnotesize 0,8669 0,9233\footnotesize 0,9233 0,9595\footnotesize 0,9595 0,9804\footnotesize \red{0,9804} 0,9914\footnotesize 0,9914 0,9966\footnotesize 0,9966 0,9988\footnotesize 0,9988

Pour déterminer aa et bb :

  • nous cherchons le plus petit kk tel que p(Xk)>0,025p(X\leq k) \textcolor{FF4500} > 0,025 ;
  • nous voyons que c’est k=12k=12 et nous avons alors : a=12a=12 ;
  • nous cherchons le plus petit kk tel que p(Xk)0,975p(X\leq k) \textcolor{FF4500} \geq 0,975 ;
  • nous voyons que c’est k=24k=24 et nous avons alors : b=24b=24.

Nous en déduisons donc que p(12X24)0,95p(12\leq X\leq 24)\geq 0,95.

  • Cela revient à dire que, parmi les 4040 personnes, il y a au moins 95%95\,\% de chance pour qu’il y ait entre 1212 et 2424 personnes qui sont allées voter au premier tour des dernières élections.
  • Ou encore, dans l’échantillon de 4040 personnes, la proportion de personnes ayant voté sera comprise entre 1240=0,3=30%\frac{12}{40}=0,3=30\,\% et 2440=0,6=60%\frac{24}{40}=0,6=60\,\%, avec un degré de confiance au moins de 95%95\,\%.

Pour aller un peu plus loin, nous pouvons noter que, si nous voulons que l’abstention dans l’échantillon soit assez représentative de la réalité, une taille d’échantillon de 4040 est loin d’être suffisante…

  • Enfin, calculons l’espérance, la variance et l’écart-type de la variable aléatoire XX.
  • Nous utilisons pour cela les propriétés que nous avons données :

E(X)=np=40×0,45=18V(X)=np(1p)=40×0,45×0,55=9,9σ(X)=V(X)=9,93,1464\begin{aligned} E(X)&=np \ &=40\times 0,45 \ &=18 \ \ V(X)&=np(1-p) \ &=40\times 0,45\times 0,55 \ &=9,9 \ \ \sigma(X)&=\sqrt{V(X)} \ &=\sqrt{9,9} \ &\approx 3,1464 \end{aligned}

Loi géométrique

Nous allons, à partir de la loi de Bernoulli, présenter la dernière loi de ce cours : la loi géométrique.

Définition et propriétés

Reprenons notre exemple du tirage d’une boule dans une urne contenant 55 boules blanches et 33 boules vertes, où le succès est de tirer une verte.

  • Nous avons vu qu’il s’agissait là d’une épreuve de Bernoulli, avec pour probabilité de succès 38\frac 38.

Nous allons cette fois nous intéresser à la variable aléatoire XX qui comptabilise le nombre de tirages nécessaires pour obtenir un succès.

  • On dit alors que XX suit la loi géométrique de paramètre 38\frac 38.
bannière definition

Définition

Loi géométrique :

On considère une épreuve de Bernoulli où la probabilité de succès est pp.
Si XX comptabilise le nombre de répétitions (identiques et indépendantes) de l’épreuve nécessaires pour obtenir le premier succès, alors on dit que XX suit la loi géométrique de paramètre pp.

Imaginons, dans notre expérience, que nous voulions connaître la probabilité de tirer la première boule verte au troisième essai.

  • Mettons en valeur, dans l’arbre pondéré correspondant, ce chemin, qui est unique :

Alt texte Image temporaire

Nous en déduisons la probabilité d’obtenir la première boule verte au troisième essai :

p(X=3)=58×58×38=(58)2×380,1465=p×(1p)31\begin{aligned} p(X=3)&=\dfrac 58\times \dfrac 58\times \dfrac 38 \ &=\left(\green{\dfrac 58}\right)^{\purple 2}\times \blue{\dfrac 38}\approx 0,1465 \ &=\blue p \times (\green{1-p})^{\purple{3-1}} \end{aligned}

La probabilité de tirer la première boule verte au troisième tirage est d’environ 0,14650,1465.

  • Et nous avons au passage illustré la propriété suivante.
bannière propriete

Propriété

Soit XX une variable aléatoire qui suit la loi géométrique de paramètre pp.
Nous avons alors, pour tout entier naturel kk non nul :

p(X=k)=p×(1p)k1p(X=k)=p\times (1-p)^{k-1}

Comme toujours, donnons les formules qui permettent de calculer les indicateurs d’une variable aléatoire qui suit une loi géométrique.

bannière propriete

Propriété

Soit XX une variable aléatoire suivant une loi géométrique de paramètre pp.
L’espérance E(X)E(X), la variance V(X)V(X) et l’écart-type σ(X)\sigma(X) sont donnés par :

E(X)=1pV(X)=1pp2σ(X)=V(X)=1pp\begin{aligned} E(X)&=\dfrac 1p \ V(X)&=\dfrac{1-p}{p^2} \ \sigma(X)&=\sqrt{V(X)}=\dfrac{\sqrt{1-p}}{p} \end{aligned}

bannière exemple

Exemple

Pour notre expérience, nous avons donc comme espérance :

E(X)=138=832,66\begin{aligned} E(X)&=\dfrac 1{\frac 38} \ &=\dfrac 83 \ &\approx 2,66 \end{aligned}

  • Cela signifie qu’il faut, en moyenne, entre 22 et 33 tirages pour obtenir une boule verte.

Toujours dans notre exemple, ce qui peut nous intéresser, c’est de connaître la probabilité de tirer une boule verte au plus tard à un certain essai, ou celle de ne toujours pas avoir rencontré le succès au bout d’un certain nombre d’essais.

bannière exemple

Exemple

  • Calculons la probabilité de tirer la première boule verte au plus tard au quatrième essai.
  • Cela revient à calculer la probabilité que la boule verte ait été tirée au premier essai, ou au deuxième, ou au troisième, ou au quatrième :

p(X4)=p(X=1)+p(X=2)+p(X=3)+p(X=4)=38×(58)11+38×(58)21+38×(58)31+38×(58)41=38×1+38×58+38×5282+38×5383=38+1564+75512+3754096=347140960,8474\begin{aligned} p(X\leq 4) &= \green{p(X=1)} + \blue {p(X=2)} + \purple{p(X=3)} + \red{p(X=4)} \ &=\green {\dfrac 38 \times \left(\dfrac 58\right)^{1-1}} + \blue{\dfrac 38\times \left(\dfrac 58\right)^{2-1}}+\purple{\dfrac 38\times \left(\dfrac 58\right)^{3-1}} + \red{\dfrac 38\times \left(\dfrac 58\right)^{4-1}} \ &=\green {\dfrac 38 \times 1} + \blue{\dfrac 38\times \dfrac 58}+\purple{\dfrac 38\times \dfrac {5^2}{8^2}} + \red{\dfrac 38\times \dfrac {5^3}{8^3}} \ &=\green{\dfrac 38}+\blue{\dfrac{15}{64}}+\purple{\dfrac{75}{512}}+\red{\dfrac{375}{4\,096}} \ &=\dfrac{3\,471}{4\,096} \ &\approx 0,8474 \end{aligned}

  • Nous pouvons en déduire la probabilité de ne toujours pas avoir tiré une boule verte après avoir effectué 44 tirages.

p(X>4)=1p(X4)[car X>4 et X4 sont des eˊveˊnements contraires]=134714096=62540960,1526\begin{aligned} p(X>4)&=1-p(X\leq 4) \ &\footnotesize{\textcolor{#A9A9A9}{\text{[car $X>4$ et $X\leq 4$ sont des événements contraires]}}} \ &=1-\dfrac{3\,471}{4\,096} \ &=\dfrac{625}{4\,096} \ &\approx 0,1526 \end{aligned}

  • Il y a donc un risque d’environ 15%15\,\% pour que l’on n’ait toujours pas obtenu de boule verte après 44 tirages.
  • Nous allons représenter graphiquement cette loi géométrique, encore une fois grâce à un tableur, pour kk jusqu’à 1515.
  • Nous mettons en ligne les 1515 valeurs de kk auxquelles nous nous intéressons.
  • Nous entrons en A2 la formule qui traduit la propriété que nous avons vue :

3/8×(5/8)3/8\times (5/8)^(A11)(A1-1)

  • Et nous la recopions vers la droite.
  • Nous mettons aussi les probabilités cumulées.

k\footnotesize k 1\footnotesize 1 2\footnotesize 2 3\footnotesize \red 3 4\footnotesize \purple 4 5\footnotesize 5 6\footnotesize 6 7\footnotesize 7
p(X=k)\footnotesize p(X=k) 0,3750\footnotesize 0,3750 0,2344\footnotesize 0,2344 0,1465\footnotesize \red{0,1465} 0,0916\footnotesize 0,0916 0,0572\footnotesize 0,0572 0,0358\footnotesize 0,0358 0,0224\footnotesize 0,0224
p(Xk)\footnotesize p(X\leq k) 0,3750\footnotesize 0,3750 0,6094\footnotesize 0,6094 0,7559\footnotesize 0,7559 0,8474\footnotesize \purple{0,8474} 0,9046\footnotesize 0,9046 0,9404\footnotesize 0,9404 0,9627\footnotesize 0,9627

8\footnotesize 8 9\footnotesize 9 10\footnotesize 10 11\footnotesize 11 12\footnotesize 12 13\footnotesize 13 14\footnotesize 14 15\footnotesize 15
0,0140\footnotesize 0,0140 0,0087\footnotesize 0,0087 0,0055\footnotesize 0,0055 0,0034\footnotesize 0,0034 0,0021\footnotesize 0,0021 0,0013\footnotesize 0,0013 0,0008\footnotesize 0,0008 0,0005\footnotesize 0,0005
0,9767\footnotesize 0,9767 0,9854\footnotesize 0,9854 0,9909\footnotesize 0,9909 0,9943\footnotesize 0,9943 0,9964\footnotesize 0,9964 0,9978\footnotesize 0,9978 0,9986\footnotesize 0,9986 0,9991\footnotesize 0,9991

Alt texte Image temporaire

Une loi « sans mémoire »

Imaginons que nous soyons malchanceux et que nous n’ayons toujours pas sorti de boule verte après 66 tirages. Nous pourrions penser que, tout de même, cela veut dire qu’il est très improbable que nous ne l’obtenions pas très rapidement.

  • Nous aurions tort, car la loi géométrique est dite « sans mémoire ».

Autrement dit, la probabilité que nous tirions une boule verte après le dixième tirage, sachant que nous n’en avons pas tiré durant les six premiers, est égale à la probabilité de la tirer après le quatrième tirage.

  • Ainsi, connaître le résultat des premiers tirages n’influe en rien sur les probabilités des tirages suivants.
bannière propriete

Propriété

Soit XX une variable aléatoire qui suit une loi géométrique.
Nous avons alors, pour tous entiers naturels non nuls kk et kk^{\prime} :

pX>k(X>k+k)=p(X>k)p_{X > k}(X>k+k^{\prime})=p(X > k^{\prime})

  • Il s’agit donc de s’intéresser au nombre d’épreuves supplémentaires kk^{\prime} par rapport à kk. La probabilité ne dépend que de kk^{\prime}.
bannière exemple

Exemple

Nous n’avons toujours pas obtenu de boule verte après 66 tirages, et nous voulons connaître la probabilité de l’obtenir après le dixième. Ici, nous avons : k=6k=6, k+k=10k+k^{\prime}=10, d’où : k=106=4k^{\prime}=10-6=4.

  • Cette probabilité est donc égale à la probabilité que la première boule verte soit obtenue après le quatrième tirage, que nous avons donnée dans la partie précédente :

pX>6(X>10)=p(X>4)=62540960,1526\begin{aligned} p_{X>6}(X>10)&=p(X>4) \ &=\dfrac{625}{4\,096} \ &\approx 0,1526 \end{aligned}

Conclusion :

Dans ce cours, nous avons découvert nos premières lois de probabilité, relativement simples mais aux applications fondamentales dans la théorie des probabilités et la science statistique.
Nous approfondirons, dans le cours prochain, cette notion de loi de probabilité non plus en l’étudiant de manière discrète, mais sur des intervalles continus.